FORMAL CHEMICAL CONVERSION OF ENMEIN INTO ent-KAURENE, ATISINE, GARRYINE, AND VEATCHINE

Eiichi Fujita^{*1}, Tetsuro Fujita, and Hajime Katayama Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu, Japan

(Received in Japan 28 April 1969; received in UK for publication 29 May 1969)

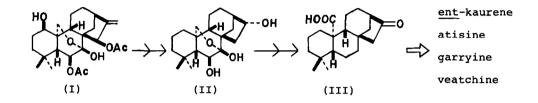
Recently, we reported¹ the chemical conversion of trichokaurin(I), a. diterpene of <u>Isodon trichocarpus Kudo</u>, <u>via</u> compound II into a keto-carboxylic acid III, which had been converted into <u>ent-kaurene*²</u>, atisine, garryine, and veatchine by Masamune². This communication deals with the chemical transformation of enmein(IV), a major diterpene of <u>Isodon</u> species, into II*³.

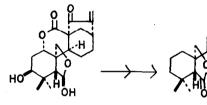
The acyloin condensation with lactone ester V^3 derived from enmein was carried out under metallic sodium-liquid ammonia system to yield 7-hemiketal-6-ol VI as a main product accompanied by other by-products**. The compound VI on acetylation gave acetate VII, m.p. 154.5 \sim 155.5°, which was dissolved in dry pyridine and photo-chemically oxygenated* with O₂ gas using heamatoporphyrin as sensitizer to give an allyl alcohol VIII, m.p. 187 \sim 189° in 70 % yield. The NMR spectrum(CDCl₃) of the alcohol gave a singlet signal at δ 4.26 ppm assignable to the C-15 proton and two singlet signals at δ 5.13 and 5.24 ppm assignable to C-17 exo-methylene protons. The C-6 proton signal appeared as a

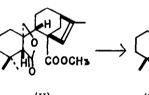
^{*1} To whom correspondence should be addressed.

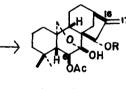
^{*&}lt;sup>2</sup> (-)-Kaurene is named like this in accordance with a proposal for nomenclature subscribed to by many workers in diterpene area. (J.W.Rowe, in preparation)

^{*&}lt;sup>3</sup> The analysis and/or mass spectra gave the satisfactory data about all the new compounds reported herein.

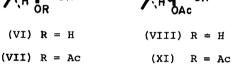

^{**} See the preceding communication.

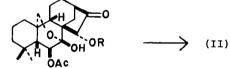

doublet (J = 5.0 Hz) at δ 5.18 ppm. A small amount of an isomer IX, m.p. 204 \sim 204.5°, whose NMR spectrum(D_5 -pyridine) showed a two protons doublet signal(J = 1.5 Hz) coupled to C-15 proton at δ 4.56 ppm assignable to C-17 methylene and a multiplet signal at δ 6.67 ppm assignable to C-15 proton, was isolated on silica gel column chromatography of the mother liquor of VIII. The allylic hydroxy group of VIII resisted against usual acetylation (Ac20-pyridine, at room temperature)⁵. Under the more forced conditions (Ac₂O-pyridine, at 110°; NaOAc-Ac2O, warming on a water-bath ; or Ac2O-pyridine-chloroform, at reflux), VIII gave a non-crystalline mixture of diacetates, which on treatment with LiAlH₄ in ether gave triol X, m.p. 185 \sim 186°. In the NMR spectrum(CDCl₃) of X. the C-15 proton signal appeared as a broad singlet at δ 4.38 ppm and C-6 proton signal as a doublet (J = 4.5 Hz) at δ 3.80 ppm. This triol on usual acetylation gave the original monoacetate VIII. The best procedure for getting diacetate XI was found after detailed investigations ; monoacetate VIII was mixed with a solution of Ac_2O in chloroform (1 : 1) containing NaOAc, and the mixture was heated at gentle reflux on a water bath for 7 to 8 hours to give a crystalline diacetate XI, m.p. 189 \sim 190°, in 48% yield. It contains two acetoxy-groups, as shown by singlet acetyl methyl protons signals at δ 1.99 and 2.01 ppm and by a C-15 proton doublet signal (J = 3.0 Hz) at δ 5.19 ppm and a C-6 proton doublet signal(J = 5.0 Hz) at δ 5.24 ppm in its NMR spectrum(CDCl₃). In this reaction, about $\frac{1}{3}$ of the starting material remained unchanged, which was observed on the thin layer chromatogram of the reaction mixture.


The diacetate XI was attempted to convert into ketone XII. Unexpectedly, Remieux-Johnson's reaction on XI resulted in the formation of many kinds of products, hence the material was treated with $0sO_4$ to give an osmate, which was decomposed by H_2S^6 to afford an unusual glycol XIII*⁵. Its NMR spectrum(CDCl₃) showed the presence of two acetoxy-groups exhibiting two singlet signals at δ 2.10 and 2.11 ppm. A broad singlet signal at δ 3.60 ppm assignable to C-15 proton, an AB-type signals at δ 3.80 and 3.98 ppm(J = 10.5 Hz) assignable to

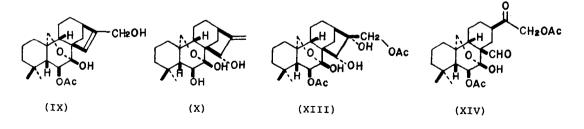

^{*&}lt;sup>5</sup> The same acetyl migration was observed also in a similar reaction with an acetate of photosensitized oxygenation product of lactone ester V.

C-20 methylene protons, a two protons singlet signal at δ 4.18 ppm assignable to C-17 methylene protons, and a doublet signal at δ 5.07 ppm(J = 5.0 Hz) assignable to C-6 proton(CDCl₃) also appeared. Thus, a rearrangement of the acetyl group⁷ was recognized. The glycol XIII on treatment with sodium metaperiodate gave keto-aldehyde XIV, m.p. 152 \sim 153°. The aldehyde proton singlet signal was observed at δ 9.57 ppm in its NMR spectrum(CDCl₃) in addition to the





(IV)



(XII) R = Ac(XV) R = H

signals of C-17 methylene protons (s, δ 4.67 ppm), two acetoxy methyl protons (δ 2.00 and 2.12 ppm) and C-6 proton doublet (δ 5.00 ppm, J = 5.0 Hz). Now, ozonolysis⁸ was tried on the diacetate XI : XI was dissolved in dry EtOAc and cooled to -75°, then an equivalent amount of ozone was passed to yield an ozonide, which was decomposed with prereduced palladium-charcoal. The reaction product was chromatographed on silica gel column to give the desired ketodiacetate XII, m.p. 201 \sim 204°, in 55% yield and a small amount of ketomonoacetate XV, m.p. 250 \sim 253°(decomp.). The IR spectrum (KBr) of XII had an absorption band at 1752 cm⁻¹ due to a cyclopentanone, and its NMR spectrum(CDCl₃) showed a doublet signal(J = 2.0 Hz) at δ 4.78 ppm assignable to the C-15 proton. The IR spectrum of XV had also an absorption band at 1750 cm⁻¹ and its NMR spectrum(CDCl₃) showed a broad singlet signal at δ 3.80 ppm assignable to C-15 proton.

Finally, keto-diacetate XII was subjected to hydrogenolysis with an excess amount of calcium in liquid ammonia to afford the known compound II, m.p. 255 \sim 260°(decomp.), which has been already converted into III¹. Thus, a formal chemical conversion of enmein into <u>ent</u>-kaurene, atisine, garryine, and veatchine was performed.

<u>Acknowledgment</u> — This work was supported in part by the grant from the Ministry of Education, which is gratefully acknowledged.

REFERENCES

- ¹ E. Fujita, T. Fujita, and M. Shibuya, Chem. Comm., 468 (1967).
- ² S. Masamune, <u>J. Am. Chem. Soc.</u>, 86, 289 (1964).
- ³ E. Fujita, T. Fujita, and Y. Nagao, <u>Tetrahedron Letters</u>, 4191 (1968).
- ⁴ M. F. Barnes and J. MacMillan, <u>J. Chem. Soc.</u>, 361 (1967) ; H. R. Rawls and P. J. Van Santen, <u>Tetrahedron Letters</u>, 1675 (1968).
- ⁵ D. P. N. Satchell, <u>Quart. Revs.</u>, <u>17</u>, 160 (1963).
- ⁶ P. K. Grant and R. Hodges, <u>Tetrahedron</u>, <u>8</u>, 261 (1960).
- ⁷ O. D. Hensens and K. G. Lewis, <u>Tetrahedron Letters</u>, 3213 (1968).
- ⁸ B. E. Cross, J. F. Grove, and A. Morrison, <u>J. Chem. Soc.</u>, 2498 (1961).